Author Affiliations
Abstract
1 University of California, Electrical and Computer Engineering Department, Los Angeles, California, United States
2 University of California, Bioengineering Department, Los Angeles, California, United States
3 University of California, California NanoSystems Institute (CNSI), Los Angeles, California, United States
The article comments on a recent framework for all-optical classification using orbital-angular-momentum-encoded diffractive networks.
Advanced Photonics
2024, 6(1): 010501
Author Affiliations
Abstract
1 University of California, Los Angeles, Electrical and Computer Engineering Department, Los Angeles, California, United States
2 University of California, Los Angeles, Bioengineering Department, Los Angeles, California, United States
3 University of California, Los Angeles, California NanoSystems Institute (CNSI), Los Angeles, California, United States
As an optical processor, a diffractive deep neural network (D2NN) utilizes engineered diffractive surfaces designed through machine learning to perform all-optical information processing, completing its tasks at the speed of light propagation through thin optical layers. With sufficient degrees of freedom, D2NNs can perform arbitrary complex-valued linear transformations using spatially coherent light. Similarly, D2NNs can also perform arbitrary linear intensity transformations with spatially incoherent illumination; however, under spatially incoherent light, these transformations are nonnegative, acting on diffraction-limited optical intensity patterns at the input field of view. Here, we expand the use of spatially incoherent D2NNs to complex-valued information processing for executing arbitrary complex-valued linear transformations using spatially incoherent light. Through simulations, we show that as the number of optimized diffractive features increases beyond a threshold dictated by the multiplication of the input and output space-bandwidth products, a spatially incoherent diffractive visual processor can approximate any complex-valued linear transformation and be used for all-optical image encryption using incoherent illumination. The findings are important for the all-optical processing of information under natural light using various forms of diffractive surface-based optical processors.
optical computing optical networks machine learning diffractive optical networks diffractive neural networks image encryption 
Advanced Photonics Nexus
2024, 3(1): 016010

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!